Mechanisms of Resistance to Anti-angiogenic Agents

Martin J. Edelman, MD
University of Maryland Greenebaum Cancer Center
Dresden, 2012
Angiogenesis: A fundamental attribute of cancer

Hanahan and Weinberg, 2011
Premise of Anti-angiogenic Therapy

- Inhibition of angiogenesis will cut off blood supply and “starve the tumor”
- Failed to account for:
 - Complexity and redundancy of angiogenic signals
 - Pre-existing vasculature
 - Ability of tumor cells to adapt to hypoxic environment
Evolutionary Biology and Angiogenesis Resistance

- Given the fundamental hypothesis that anti-angiogenic therapy is effective through alteration of the tumor environment, it is appropriate to discuss resistance in terms of evolutionary biology.
- Evolution favors phenotype not genotype
- “Survival of the fittest”
 - Alternative signaling
 - Evasive adaptation
 - Alternative ecological niche
 - Convergent evolution
Basic Mechanisms

• Acquired resistance
 – Initial response to anti-angiogenic therapy, followed by resistance

• Intrinsic resistance

Adaptation: Induced Angiogenic Factors

- Multiple factors can result in angiogenesis.
- Inhibition of one simply results in induction of other factors
- Upregulation of pro-angiogenic factors
 - FGF
 - Angiopoietins
 - Ephrins
Adaptation:

Recruitment of Bone Marrow Derived Endothelial Precursors (BMDC)

• Hypoxia results in recruitment of BMDC that can result in new vasculature.
 – Proangiogenic monocytes
 • TIE2+
 • VEGFR1+ hemangiocytes
 • CD11b+ myeloid cells
Evasive adaptation: Recruitment of Pericytes

- Pericytes support the vasculature and are also constituents of the neovasculature.
- Increased pericyte coverage can enhance the viability of residual endothelial cells after anti-angiogenic therapies.
- Dual targeting of pericytes and endothelial cells may be a viable approach to enhancing efficacy of antiangiogenic therapies.
Alternative Ecological Niche: Increased Tumor Invasiveness

- Tumors adapt by becoming more invasive
 - Growth is slower
 - Malignant cells migrate along existing vasculature
 - Demonstrated in an orthotopic GBM model
Convergent Evolution: Vascular Mimicry

• Tumor cells can form vascular channels.
 – Particularly well described in melanoma
 – Also occurs in other malignancies.
• Tumor channels anastamose with existing vasculature

Folberg, Am J Pathol, 2000
Inherent resistance

- Bringing a knife to a gun fight
- Lack of even minimal benefit
- Target is incorrect or there are existing redundant mechanisms
 - E.g. use of VEGF antibody (bevacizumab) in malignancy in which VEGF is not the primary mechanism of neoangiogenesis
- Tumor is already infiltrated with stroma that has upregulated multiple pathways of angiogenesis
- Tumor is hypovascular e.g. pancreatic cancer
- Tumor blood supply is from co-opting normal vessels.
Chemotherapy and antiangiogenic agents

- Part (all?) of the benefit from existing antiangiogenic agents may come from normalization of blood vessels and better delivery of chemotherapy.
- A corollary to this hypothesis is that resistance to antiangiogenic agents is really the primary or acquired resistance to the chemotherapy regimen.
Chemotherapy and Circulating Endothelial Precursor (CEP) Cells

- Taxane therapy induces CEPs
- Effect is ablated with anti-angiogenic agents
- Not relevant with other agents (no data with pemetrexed)
- Could result in accelerated tumor growth after cessation of therapy

Shaked, Cancer Cell 2008, 14:263-273
Consequences of Antiangiogenic Agent Resistance at the Macro Level

- Many animal models demonstrate an initial slowing or regression of tumor, followed by accelerated growth and metastases.
- Accelerated growth results from:
 - Increased angiogenic factors (which double as growth factors)
 - Enhanced invasiveness
 - Ability to survive in more hostile environments
- This is likely reflected clinically in the finding of increased PFS but no difference in OS.

Paez-Ribes, Cancer Cell 15, 220-231, 2009
Ebos, Cancer Cell, 15, 232-239, 2009
Other issues

- Many of the “anti-angiogenic” agents developed e.g. anti-VEGF TKI’s are non-specific and the actual benefits may be due to mechanisms other than inhibition of angiogenesis.
- Even the results with anti-VEGF antibodies may not be due to disruption and/or prevention of neovasculature
- Therefore, still other mechanisms of resistance.

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Sunitinib</th>
<th>Motesanib</th>
<th>Sorafenib</th>
<th>Vandetanib</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGFR-1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1600</td>
</tr>
<tr>
<td>VEGFR-2</td>
<td>4</td>
<td>3</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>VEGFR-3</td>
<td>17</td>
<td>6</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>PDGFR-a</td>
<td>69</td>
<td>84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PDGFR-b</td>
<td>39</td>
<td>-</td>
<td>57</td>
<td>1100</td>
</tr>
<tr>
<td>Raf</td>
<td>-</td>
<td>91</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>C-kit</td>
<td>1</td>
<td>8</td>
<td>68</td>
<td>>20,000</td>
</tr>
<tr>
<td>Flt-3</td>
<td>8</td>
<td>-</td>
<td>58</td>
<td>-</td>
</tr>
<tr>
<td>EGFR</td>
<td>>10,000</td>
<td>>3000</td>
<td>>10,000</td>
<td>500</td>
</tr>
<tr>
<td>RET</td>
<td>224</td>
<td>59</td>
<td>47</td>
<td>130</td>
</tr>
</tbody>
</table>

Zhou, Trans Lung Ca Res 2012
Conclusions

• Evolution favors phenotype, not genotype
 – Malignancies will adapt to the more hostile environment

• Antiangiogenic agents target a broad range of molecular targets.
 – Resistance may be primary: target is not relevant to that disease.
 – Resistance may be acquired and will depend upon which target is actually effected.

• Overcoming “antiangiogenic” drug resistance will require a better understanding of the true mechanism(s) of action. These may vary:
 – By tumor type
 – By point in the tumor development
 – With the companion regimen
 – Other aspects of the host state (e.g. immunologic variables).
Acquired Resistance

- Initial benefit followed by progression
 - Seen in some single agent animal models
- Tumor actually becomes more aggressive.
- Clinical counterpart: prolonged PFS, no change in OS

Prager, Transl Lung Cancer Res 2012; 1:14-25